Programming Data Structures and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 07
Lecture - 01
Abstract Datatypes, Classes and Objects

(Refer Slide Time: 00:02)

Data structures

» Behaviour defined through interface
» Allowed set of operations

* Stack: push() and pop()

* Queue: addg() and removeq()

* Heap: insert() and delete_max()

* Heap implemented as a list h, does not mean
h.append(7) is legal

We have seen how to implement data structures such as, stacks, queues and heaps using
the built in list type of Python. It turns out that one can go beyond the built in types in
python and create our own data types. So, we will look at this in more detail in this

weeks' lectures.

Let us revisit what we lean by a data structure. A data structure is basically an
organization of information whose behavior is defined through an interface. So an
interface is nothing but the allowed set of operations, for instances for a stack the
allowed set of operations are push and pop. And of course, we can also query whether a

stack is empty or not.

Likewise, for a queue the only way we can modify a queue is to add something to the tail

of the queue using the function add q and remove the element at the head of the queue

485

using the function remove q. And for a max heap for instance, we have the functions
insert to add am element and delete max which removes the largest element from the

heap.

Now, just because we implement a heap as a list it does not mean that the functions that
are defined for lists are actually legal for the heap. So if we have a heap h, which is
implemented as a python list though the list will allow an append function. The append
function on it is own does not insert a value and maintain the heap property. So, in

general the call such as h dot append 7 would not be legal.

(Refer Slide Time: 01:35)

Abstract datatype

» Define behaviour in terms of operations

¢ (s.push(v)).pop() == v

e ((g.addq(u)).addq(v)).removeq() == u
* No reference to implementation details

* Implementation can be optimized without affecting
functionality

So, we want to define new abstract data types in terms of the operations allowed. We do
not want to look at the implementation and ask whether it is a list or not, because we do
not want the implementation to determine what is allowed, we only want the actual

operations that we define as the abstract interface to be permitted.

For instance if we have a stack s and we push value v then the property of a stack
guarantees that if we immediately apply pop the value we get back is our last value push
and therefore we should get back v. In other words, if we execute this sequence we first

to s dot push and then we do a pop then the value that we pushed must be the value that

486

we get back.

This is a way of abstractly defining the property of a stack and how push and pop interact
without actually telling us anything about how the internal values are represented. In the
same way if we have an empty queue and we add to it two elements u and v and then we
remove the head of the queue, then we expect that we started with an empty queue and
then we put in from this end u and then we put in a v, then the element that comes out
should be the first element namely u. In other words assuming that this is empty then if
we add u and add v and then remove the head we should get back first element that we

put in namely u.

The important thing is that we would like to define the behavior of a data type without
reference to the implementation. Now this can be very tedious because you have to make
sure that it capture all the properties between functions, but this can be done and this is
technically how an abstract data type is defined. Now large purposes we will normally
define it more informally and we will make reference to the implementation, but we

definitely do not want the implementation to determine how these functions work.

In other words, we should be able to change one implementation to another one such that
the functions behave the same way and the outside user has no idea which
implementation is used. Now this is often the case when we need to optimize
implementation, we might come up with an inefficient implementation and then optimize
it. For instance we saw that for a priority queue we could actually implement it as a
sorted list and then we could implement insert as an insert operation in a sorted list

which you take order m time, but delete max would just remove the head of the list.

This is not optimal because over a sequence of n inserts and deletes this takes time order
n square. So if we replace the internal implementation from a sorted list to a heap we get
better behavior, but in terms of the actual values that the user sees as a sequence of
inserts and delete max the user does not see any difference between the sorted list
implementation and the heap implementation. Perhaps, there is a perception that the one
is faster than the other, but the actual correctness of the implementation should not be

affected by how you choose to represent the data. So, this is the essence of defining an

487

Abstract datatype.

(Refer Slide Time: 04:40)

Black box view

* Imagine the data Display
structure as a black |
box !

« Designated buttons to

interact . .
pop push
« Slot for input

* Display for output : !

* No other manipulation Input
allowed

So, good way to think of an abstract datatype is as a black box which allows limited
interaction. Imagine something like an ATM machine. So, we have the data structure as a
black box and we have certain buttons which are the public interface, these are the
functions that we are allowed to use. In this picture imagine this is a stack and the
buttons were allowed to push are pop and push let they are allowed to remove the top

elements from the stack; they are allowed to put an element into the stack.

Now this requires us to also add and view things from the stack, so we also have a slot
for input which is shown as a kind of a thing at the bottom here we have the slot for
input. And we have the way to receive information about the state of the stack. So we can

imagine that we have some kind of a display.

This is typically how we would like to think of a data structure, we do not want to know
what is inside the black box we just want to specify that if we do a sequence of button
pushes and we start supplying input through the input box what do we expect to see if the
display. Other than this, no other manipulation should be allowed. We are not allowed to

exploit what is inside the box in order to quickly get access say to the middle of a stack

488

or the middle of a queue. So we do not want such operations, we only want those
operations which the externally visible interface or the buttons in this case of the black

box picture allow us to use.

(Refer Slide Time: 06:21)

Built in datatypes

1 =[]

» List operations 1.append(), 1.extend() permitted
= ... but not dictionary operations like 1.keys()

» Likewise, afterd = {}, d.values() is OK
¢ ... but not d.append()

« Can we do this for stacks, queues, heaps, ...?7

In a sense this is already implemented when we use the built in data types of python, if
we announce that the name | is of type list by setting | to the empty list then immediately
python will allow us to use operations like append and extend on this list, but because it
is of list type and not dictionary type we would not be able to execute an operations such

as keys which is defined for dictionaries are not list.

Likewise if we define d to be an empty dictionary then we can use a function such as d
dot values to get the list of values currently stored, but we cannot manipulate d as a list.
So, we cannot say d dot append it will give us an error. Python uses the type information
that it has about the value give assign to a name to determine what functions are legal
which is exactly what we are trying to do with these abstract data types. We are trying to
say that the data type on it is own should allow only certain limited types of access
whose behavior is specified without telling us anything about the internal

implementation.

489

Remember for instance we saw that in a dictionary even if we add a sequence or values
in the particular order we ask for the values after sometime they may not written in the
same order, because internally there is some optimization in order to make it fast to look
up a value for it. We have no idea actually how dictionaries implemented inside, but what
we do know is that if we provide a key and that key is a valid key we will get the
associated with that key, we do not ask how this is done and we do not know whether

from one version of python to the next the way in which this is implemented changes.

Our question is, that instead of using the built in list for stacks, queues and heaps and
other data structures can we also defined a data type in which certain operations are

permitted according to the type that we start with.

(Refer Slide Time: 08:17)

Object Oriented
programming

* Data type definition with
» Public interface
* Operations allowed on the data
« Private implementation

» Match the specification of the interface

This is one of the main things which are associated with a style of programming called
Object Oriented program. In object oriented program, we can provide data type
definitions for new data types in which we do precisely what we have been talking about
we describe the public interface, that is the operations that are allowed on the data and
separately we provide an implementation which should be private, we will discuss later
that in python we do not actually have a full notion of privacy because of the nature of

the language.

490

But ideally the implementation should not be visible outside only the interface should
allow the user to interact with the implemented data. Of course, the implementation must

be such that the functions that are visible to the user behave correctly.

So here for instance if we had a heap the public interface would say insert and delete
max, the private implementation may be a sorted list or it may be a heap and then we
would then have to ensure that if we are using a sorted list we implement delete max and
insert in the correct way and if we switch from that to a heap the priority queue

operations remain the same.

(Refer Slide Time: 09:33)

Classes and objects

FNSIVALYY

class Heap: # Create object,
def /_init_) (self,l) ¥ # calls __init__O
Create heap \ L = [14,32,15]
from list 1 (h) Heap(D)
def insert(self,x): # Apply operation
insert x into heap h.insert(17)
def delete_max(self,x): h.insert(28)
return max element Vv h.delete_max()

In the terminology of object oriented programming there are two important concepts;
Classes and Objects. A class is a template very much like a function definition is a
template, when we say def and define a function the function does not execute it just
gives us a blue print saying that this is what would happen if this function were called
with a particular argument and that argument to be substituted for the formal parameter

in the function and the code in the function will be execute to the corresponding value.

In the same way a class sets up a blue print or a template for a data type. It tells us two

things it tells us; what is the internal implementation? How is data stored? And it gives

491

us the functions that are used to implement the actual public interface. So, how you
manipulate the internal data in order to effect the operations that the public interface
allows. Now once we have this template we can construct many instances of it. So, you
have the blue print for a stack you can construct many independent stacks, each

independent stack has it is own data that stacks do not interfere with each other.

Each of them has a copy of the function that we have defined associated with it. Rather
than the kind of the main difference from classical programming is, in classical
programming you would have for instance a function like say push define and it will
have two parameters typically a stack and a value. So, you have one function and then

you provide it the stack that you want to manipulate.

On the other hand, now we have several stacks sl, s2, s3, etcetera which are created as
instance as class, and logically each of them has it is own push function. So there is a
push associated with s1, that the push associated is s2, the push associated with s3 and so
on. Each of them is a copy of the same function derived from this template, but this
implicitly attach to the single object. So, this is just a slight difference in perspective
instead of having a function to which you pass the object that you want to manipulate

you have the object and you tell it what function to apply to itself.

So, let us look at a kind of example this would not be a detailed example it will just give
you a flavor of what we are talking about. Here is a skeleton of a definition of a class
heap. So now, we instead of using the built in list we want to define our own data type
heap. So there are some function definitions. These def statements and these correspond
to definition in the functions and what we will see is that inside these definitions we will
have values which are stored in each copy of the heap. So, just to get a little bit of an

idea about how this is would work.

When we create on object of type heap we call it like a function. So, we say h is equal to
heap 1, so this implicitly says give me an instance of the class heap with the initially
value | passed to it now this calls this function mit which is why it is called mit. So, init
is what is called a constructor. A constructor is a function that is called when the object is

created and sets it up initially in this particular case our constructor is presumed to take

492

an arbitrary list of values say 14, 32, 15 and heapify it. So, somewhere inside the code of

it there will be a heapification operation which we are not actually shown in this slide.

This is how you create objects. You first define a class we will look at a complete
example soon, we define a class and then you call the class sort of like a function and the
name that is attach to this function call or this class were becomes a new object, As we
said we have functions like insert and delete max define for heaps, but it is like we have

the separate copy of this function for each individual heaps.

In this case we are created a heap h, so we want to tell h msert in yourself the value 70.
So, we write that as insert with respect to h. So, h dot insert 17, as suppose to insert h 17
which would be the normal functional style of writings. We would normally pass it the
heap and the value, here instead we say given the heap h apply to the heap h the function

insert with the argument 70.

The next line says apply to the heap h in function insert to the value 28 and then for
instance we can now ask h to return the maximum value by it is an h dot delete max and

store the return value in the main v.

(Refer Slide Time: 14:28)

Summary

* An abstract data type is a black box description
* Public interface — update/query the data type

» Private implementation — change does not
affect functionality

» Classes and objects can be used for this

* More details in the next lecture

493

So, what we would like to emphasize is that an abstract data type should be seen as a
black box. Like a black box has a public interface the buttons that you can push to update
and query the data type to add things, delete things, and find out what whether the data
type is empty and so on. Inside we have a private implementation. This actually stores
data in some particular way to make the public functions work correctly. But the
important thing is, changing the private implementation should not affect how the

functions behave in terms of input and output.

They may behave differently in terms of efficiency, you might see that one version is
faster than another or one version slower than another, but this is not the same as saying
that the functions change. So, we do not want the values to change, if we have a priority
queue and we insert a set of values and then delete max no matter how the priority queue
is actually implemented internally the delete max should give us the same value at the

end.

So, we saw that python supports object oriented programming, we shall look at it in more
detail in the next couple of lectures in these weeks course, but the main concept
associated with this objected oriented programming are classes and objects. Classes are
templates for data types and objects are instances of these classes they have a concrete

data types which we use in our program.

494

